Forecasting carbon dioxide emissions: application of a novel two-stage procedure based on machine learning models
نویسندگان
چکیده
Abstract Accurate forecast of carbon dioxide (CO2) emissions plays a significant role in China's peaking and neutrality policies. A novel two-stage procedure based on support vector regression (SVR), random forest (RF), ridge (Ridge), artificial neural network (ANN) is proposed evaluated by comparing it with the single-stage procedure. Nine independent variables’ data (study period: 1985–2020) are used to CO2 China. Our results reveal that, when time gap, h increases from 1 8, average root mean squared error (RMSE) absolute (MAE) SVR–SVR, SVR–RF, SVR–Ridge, SVR–ANN almost uniformly lower than errors arising their version, respectively. Among these models, exhibits lowest errors, whereas SVR–RF admits highest. The percentage decrease SVR–SVR vs. SVR, RF, SVR–Ridge Ridge, ANN 36.06, 5.98, 43.05, 14.81 for RMSE, 6.91, 43.27, 15.35 MAE. also suitable other variables, such as fossil fuel renewable energy consumption.
منابع مشابه
Forecasting U.S. State-Level Carbon Dioxide Emissions
Due to criticisms of potential identification issues within spatial panel data models, this study contributes to the literature by comparing forecasts of U.S. state-level carbon dioxide emissions against empirical reality using panel data models with and without spatial effects. From a policy standpoint, understanding how to predict emissions is important for designing climate change mitigation...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولForecasting Carbon Dioxide Emissions in China Using Optimization Grey Model
Carbon dioxide (CO2) is one of the most important anthropogenic greenhouse gases (GHG) that caused global environmental degradation and climate change. China has been the top carbon dioxide emitter since 2007, surpassing the USA by an estimated 8%. So, forecasting future CO2 emissions trend in China provides the basis for policy makers to draft scientific and rational energy and economic develo...
متن کاملPrediction of carbon dioxide emissions based on principal component analysis with regularized extreme learning machine: The case of China
Nowadays, with the burgeoning development of economy, CO2 emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast CO2 emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make CO2 emissions prediction bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Water and Climate Change
سال: 2023
ISSN: ['2040-2244', '2408-9354']
DOI: https://doi.org/10.2166/wcc.2023.331